close
書名:人工智慧與深度學習:理論與Python實踐,語言:繁體中文,ISBN:9789865023898,頁數:272,出版社:碁峰,作者:黃日鉦,出版日期:2020/03/13,類別:電腦資訊

人工智慧與深度學習:理論與Python實踐~好書精選[悅讀推薦]博客來 金石堂 好冊


人工智慧與深度學習:理論與Python實踐


內容簡介


  近年來,深度學習的相關演算法已被廣泛使用在電腦視覺(computer vision)、神經機器翻譯(neural machine translation)、神經風格轉換(neural style transfer)及聊天機器人(chatbots)等的應用。 
 
  雖然網路上已經提供了許多深度學習的各種演算法程式,但若只會使用程式卻不瞭解各種演算法的內涵,對於深度學習的領域只能是見樹不見林,無法真正體會深度學習的精要,亦無法有更深入的應用。因此,本書以人工智慧及深度學習的理論基礎著手,來陳述各種人工智慧演算法的理論基礎及完整數學推導過程,並輔以Python來進行各演算法的實踐,以達到精通人工智慧演算法的目的。 
 
本書特色 
 
  •從深度學習的預備知識開始,帶領讀者具備進入深度學習的領域知識。 
  •提供各種演算法的手算範例,讓讀者更能理解各演算法的過程。 
  •除介紹在深度學習已常用的方法外,更加介紹新近的各種演算法。 
  •推導各種演算法的梯度過程,使讀者更深入瞭解演算法的數理過程。 
  •各章節提供數個Python範例,完整帶領讀者使用深度學習來解決各類問題。 



詳細網址:人工智慧與深度學習:理論與Python實踐~好書精選[悅讀推薦]博客來 金石堂 好冊



目錄


chapter 01 深度學習的預先知識 

1-1 線性代數 (Linear Algebra) 
1-2 微積分 (Calculus) 
1-3 最佳化理論 
1-4 統計學 
1-5 Python 程式語言介紹 

chapter 02 前饋式神經網路 
2-1 感知機 
2-2 多層感知機 
2-3 深度前饋式神經網路 
2-4 深度神經網路的梯度下降方式 
2-5 過適化問題 (Overfitting Problem) 
2-6 程式範例 

chapter 03 卷積神經網路 
3-1 卷積神經網路架構 
3-2 倒傳遞法進行參數更新 
3-3 數值範例 
3-4 殘差網路 
3-5 程式範例 

chapter 04 遞迴式神經網路 
4-1 遞迴式神經網路 
4-2 序列學習 (Sequential Learning) 
4-3 Elman 神經網路理論模型 
4-4 長短期記憶 (Long Short-Term Memory, LSTM) 模型 
4-5 Peephole 長短期記憶 (Peephole LSTM) 模型 
4-6 GRU (Gated Recurrent Unit) 模型 
4-7 雙向 LSTM (Bidirectional LSTM) 
4-8 程式範例 

chapter 05 侷限型波茲曼模型、深度信念網路及自編碼器 
5-1 侷限型波茲曼模型 (Restricted Boltzmann Machines, RBM) 
5-2 深度信念網路 (Deep Belief Networks, DBN) 
5-3 自編碼器 (Autoencoders) 
5-4 程式範例 

chapter 06 其他網路模型 
6-1 自迴歸模型 (Autoregressive Models) 
6-2 自生成模型 (Generative Models) 
6-3 神經圖靈機 
6-4 注意力模型 (Attention-based Models) 
6-5 程式範例 

chapter 07 強化學習 
7-1 馬可夫決策過程 
7-2 Bellman 方程式 
7-3 深度 Q- 網路 (Deep Q-Network, DQN) 
7-4 政策梯度 (Policy gradients) 
7-5 Advantage Actor-Critic (A2C) Methods 
7-6 程式範例



詳細網址:人工智慧與深度學習:理論與Python實踐~好書精選[悅讀推薦]博客來 金石堂 好冊



詳細資料


  • ISBN:9789865023898
  • 規格:平裝 / 272頁 / 17 x 23 x 1.36 cm / 普通級 / 部份全彩 / 初版
  • 出版地:台灣



詳細網址:人工智慧與深度學習:理論與Python實踐~好書精選[悅讀推薦]博客來 金石堂 好冊



作者介紹


作者簡介
 
黃日鉦 
 
  東吳大學資訊管理學系教授,任教科目包括人工智慧,深度學習,巨量資料分析,多變量分析及社群網路分析。相關研究共計超過60篇期刊論文及會議論文。



詳細網址:人工智慧與深度學習:理論與Python實踐~好書精選[悅讀推薦]博客來 金石堂 好冊




 
  目前常見用於開發人工智慧的程式語言有C++、Java、Python、LISP及Prolog等,其中Python可說是近年來最熱門的程式語言。主要原因是Python不像C++或Java般的困難,所以更適合快速開發程式,並且有豐富的函式庫支援Python進行各種的深度學習演算法。另一方面,LISP與Prolog都是早期發展人工智慧的程式語言,然而目前受限於使用者社群人數較少,所支援的函式庫並不如其他語言豐富,且LISP與Prolog語言的特色,目前大多都可以在Python中找得到,因此本書以Python來做為開發人工智慧與深度學習的語言程式。 
 
  雖然近年來有許多人工智慧及深度學習的書藉陸續出版,但都較為強調語言程式的使用及應用,缺乏對各種演算法的內容做系統性及數學模型的介紹,這樣的學習會較流於表面,而無法學習到各個演算法的精華所在,也無法對各種演算法進行修正或是自創最好的演算法,這對大專院校學生在學習深度學習時,必定有所不足。 
 
  因此,本書之主要目的,即是提供深度學習領域內,各種演算的理論基礎及數學模型,提供讀者對於各種模型的深度理解,來瞭解各種演算法的精華所在。再輔以Python程式範例,一步步帶領讀者進入深度學習的世界。



詳細網址:人工智慧與深度學習:理論與Python實踐~好書精選[悅讀推薦]博客來 金石堂 好冊


人工智慧與深度學習:理論與Python實踐

詳細網址:人工智慧與深度學習:理論與Python實踐~好書精選[悅讀推薦]博客來 金石堂 好冊


資料來源:博客來,圖片來源:博客來





人工智慧與深度學習:理論與Python實踐 中文書>電腦資訊>概論/科技趨勢>人工智慧/機器學習 博客來 金石堂 好書推薦 排行榜 今日66折 網路書局 暢銷書 優質團購 熱銷特賣 網友推薦 優惠精選 超值好貨 狂降優惠 推薦必買 熱銷排行 快速到貨 必BUY超值專區 TOP熱銷排行 新品上市 最新上架

arrow
arrow
    創作者介紹
    創作者 博客來好書推薦 的頭像
    博客來好書推薦

    經典排行榜暢銷書博客來金石堂推薦

    博客來好書推薦 發表在 痞客邦 留言(0) 人氣()