close
書名:核心開發者親授!PyTorch深度學習攻略,語言:繁體中文,ISBN:9789863126737,頁數:656,出版社:旗標,作者:Eli Stevens,Luca Antiga,Thomas Viehmann,譯者:黃駿,出版日期:2021/07/23,類別:電腦資訊

核心開發者親授!PyTorch深度學習攻略~好書精選[悅讀推薦]博客來 金石堂 好冊


核心開發者親授!PyTorch深度學習攻略


內容簡介


【PyTorch官方唯一推薦教材!】
 
  深度學習是近年來非常夯的一個領域,發展的速度也十分的驚人。曾經,深度學習的函式庫五花八門,各自都具備了一定的重要性。如今,使用者開始往兩大函式庫,PyTorch及Tensorflow靠攏,進而鞏固了它們的地位。在2018年以前,Tensorflow在國際學術頂尖會議中的論文引用率都遠超PyTorch。自2019年起,PyTorch就奮起直追,越來越受到學者們的喜愛。在ICLR 2020和CVPR 2020會議中,使用PyTorch的論文數已超越Tensorflow。由此可見,掌握PyTorch,是勢在必行的!
 
  PyTorch最為人稱道就是語法和Python相近,一樣簡潔好學,與Numpy、Pandas函式庫的相容性也很好,並支援動態運算圖(dynamic computational graph),有助於模型的優化,對記憶體的使用也非常有效率。本書作者為PyTorch核心開發者,深知PyTorch的強大之處,並擁有豐富的深度學習經驗,將帶你從無到有,利用PyTorch建構出深度學習模型,並用其來解決現實問題的能力。
 
  與其他深度學習框架書相比,本書的最大特色為:利用數個章節來實作肺癌偵測專案。在實作該專案的過程中,你可以實際體會到如何充分把所學應用出來,並針對過程中所遇到的問題來找出解方。更重要的是,作者的寶貴經驗會讓你少走許多彎路,快速培養實戰能力!
 
  閱讀完本書後,你將了解:
  ★深度學習的基本資料結構:張量(tensor)
  ★如何實作模組及損失函數
  ★如何從PyTorch Hub中載入預先訓練的模型
  ★在有限的資料下,訓練模型的方法
  ★分析測試結果,並找出現有模型中的問題
  ★透過擴增資料等方法,提高模型的表現
 
  如果你對深度學習非常有熱忱,並且已經具備一定的Python能力,願意跟著書中內容動手嘗試,那你就是本書最適合的讀者! 
 
本書特色
 
  ◎作者為PyTorch核心開發者,能以更全面的視角來進行教學
  ◎實作內容豐富,花費大量篇幅處理肺癌偵測專案
  ◎時刻提點實作專案時可能遇到的陷阱,讓讀者少走彎路
  ◎各章節的內容皆搭配程式範例,讀者可實際演練來加深印象
  ◎本書由施威銘研究室監修,書中針對原書進行大量補充,並適當添加註解,幫助讀者更好地理解內容
 
專家推薦
 
  ●Soumith Chintala,PyTorch 共同開發者 & Facebook AI Research 研究員: 
  『這本書出版後,我們終於有了關於 PyTorch 的權威著作,它具體地說明了基礎的知識和概念。』 
 
  ●Mathieu Zhang,NVIDIA 深度學習技術經理: 
  『將深度學習切割成易於讀者消化的區塊,再以程式範例作為輔助。』
 
  ●Philippe Van Bergen,PÇ Consulting 雲端架構師:
  『具及時性、實務性及透徹性的一本書。你應該把它放在你的電腦旁,而不只是把它放在書架上。』
 
  ●Orlando Alejo Méndez Morales,Experian 軟體分析師:
  『這本書提供了非常實用的深度學習概述,適合做為教學資源。』



詳細網址:核心開發者親授!PyTorch深度學習攻略~好書精選[悅讀推薦]博客來 金石堂 好冊



目錄


★第一篇 PyTorch的核心
☆第1章:深度學習與PyTorch函式庫

1-1 深度學習的演變 
1-2 將PyTorch應用到深度學習中 
1-3 為什麼要使用PyTorch? 
1-4 PyTorch如何協助深度學習專案的開發 
1-5 軟硬體需求 

☆第2章:預先訓練的模型
2-1 利用預先訓練的模型來辨識圖像中的物體
2-2 利用預先訓練的模型來生成『假』圖片
2-3 能描述場景的神經網路模型 
2-4 Torch Hub 
2-5 結論 

☆第3章:介紹張量
3-1 浮點數的世界 
3-2 張量:多維陣列 
3-3 利用索引值操作張量 
3-4 為張量命名 
3-5 張量的元素型別 
3-6 其他常用的張量功能 
3-7 張量的儲存原理 
3-8 大小 、偏移及步長 
3-9 把張量移到GPU上 
3-10 與NumPy的互通性 
3-11 通用的張量(可適用於各種硬體) 
3-12 將張量序列化(長期儲存) 
3-13 結論 

☆第4章:用張量表示現實中的資料
4-1 圖片資料 
4-2 3D立體圖片資料 
4-3 表格資料 
4-4 時間序列資料 
4-5 表示文字資料 
4-6 結論 

☆第5章:學習的機制 
5-1 學習的流程 
5-2 學習就是在估算參數 
5-3 以降低損失為目標 
5-4 梯度下降演算法 
5-5 用PyTorch的autograd進行反向傳播
5-6 結論 

☆第6章:使用神經網路來擬合資料
6-1 神經元 
6-2 PyTorch的nn模組 
6-3 進入正題:神經網路 
6-4 結論

☆第7章:從圖片中學習
7-1 由小型圖片組成的資料集 
7-2 區分鳥和飛機 
7-3 結論 

☆第8章:卷積神經網路
8-1 關於卷積 
8-2 卷積的實際應用 
8-3 建立nn.Module的子類別 
8-4 訓練卷積網路 
8-5 模型設計的進階技巧 
8-6 結論 

★第2篇 從現實世界中的圖片學習:肺部腫瘤偵測專案
☆第9章:利用PyTorch對抗癌症
9-1 應用實例的介紹 
9-2 為大型專案做準備 
9-3 CT掃描到底是什麼? 
9-4 專案概述:肺部腫瘤偵測器 
9-5 結論 

☆第10章:匯入原始資料並整合為資料集
10-1 原始CT資料
10-2 分析LUNA的標註資料 
10-3 匯入CT掃描資料 
10-4 定位結節 
10-5 簡單的資料集實作 
10-6 結論 

☆第11章:訓練模型分辨結節的真假
11-1 最基礎的模型與訓練迴圈 
11-2 程式的進入點 
11-3 訓練前的設定與初始化 
11-4 我們的首個神經網路 
11-5 模型的訓練與驗證 
11-6 輸出表現評估資料
11-7 執行訓練程式 
11-8 評估模型表現:得到99-7%的分類準確率就代表結束了嗎? 
11-9 使用TensorBoard畫出訓練評估指標 
11-10 為什麼模型沒有學會偵測結節? 
11-11 結論 

☆第12章:利用評估指標和資料擴增來改善訓練成效
12-1 模型改善的大方向
12-2 偽陽性與偽陰性
12-3 陽性與陰性的視覺化描述
12-4 理想的資料集長什麼樣子?
12-5 過度配適
12-6 利用資料擴增來防止過度配適
12-7 結論

☆第13章:利用『分割』找出疑似結節的組織
13-1 在專案中加入第二個模型
13-2 不同類型的資料分割
13-3 語義分割:像素層級的分類
13-4 更改模型以執行資料分割
13-5 更改資料集以執行資料分割
13-6 更改訓練程式以執行資料分割
13-7 最終結果
13-8 結論

☆第14章:端到端結節偵測(與未來方向)
14-1 迎向終點線
14-2 保持驗證資料集的獨立性
14-3 連接『分割模型』與『分類模型』
14-4 量化驗證
14-5 預測惡性結節
14-6 利用模型進行診斷
14-7 補充資源與資料
14-8 結論



詳細網址:核心開發者親授!PyTorch深度學習攻略~好書精選[悅讀推薦]博客來 金石堂 好冊



詳細資料





詳細網址:核心開發者親授!PyTorch深度學習攻略~好書精選[悅讀推薦]博客來 金石堂 好冊



作者介紹


作者簡介
 
Eli Stevens
 
  Eli Stevens主要在矽谷的新創公司任職。其所扮演的角色相當多元,從軟體工程師(負責企業網路設備)到CTO(開發與放射腫瘤學相關的軟體)都有。在研究發表方面,Eli的文章主要涉及機器學習在自動駕駛工業的應用。
 
Luca Antiga
 
  Luca Antiga在2000年代初期擔任生物醫學工程的研究員;而在過去十年,他也是一家AI工程公司的共同創辦人兼CTO。許多開源專案都有Luca的貢獻,其中就包括了PyTorch的核心部分。
 
Thomas Viehmann
 
  Thomas Viehmann在德國慕尼黑擔任PyTorch機器學習技術的訓練員和顧問,同時也是PyTorch的核心開發者之一。



詳細網址:核心開發者親授!PyTorch深度學習攻略~好書精選[悅讀推薦]博客來 金石堂 好冊


核心開發者親授!PyTorch深度學習攻略

詳細網址:核心開發者親授!PyTorch深度學習攻略~好書精選[悅讀推薦]博客來 金石堂 好冊


資料來源:博客來,圖片來源:博客來





核心開發者親授!PyTorch深度學習攻略 中文書>電腦資訊>概論/科技趨勢>人工智慧/機器學習 博客來 金石堂 好書推薦 排行榜 今日66折 網路書局 暢銷書 優質團購 熱銷特賣 網友推薦 優惠精選 超值好貨 狂降優惠 推薦必買 熱銷排行 快速到貨 必BUY超值專區 TOP熱銷排行 新品上市 最新上架

arrow
arrow
    創作者介紹
    創作者 博客來好書推薦 的頭像
    博客來好書推薦

    經典排行榜暢銷書博客來金石堂推薦

    博客來好書推薦 發表在 痞客邦 留言(0) 人氣()