文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
內容簡介
* amazon.com 五顆星讀者無差評
* 史丹佛大學、劍橋大學相關課程指定教材
雖然資料科學越來越常被用來改善工作場域的種種決策,但對普羅大眾來說,這仍然是個神祕難懂的領域。本書避開艱深的數學與生澀的術語,以直觀的例子來說明各演算法功能與特色,例如,用預測犯罪事件的例子來解釋隨機森林,用分群演算法來分析各類電影迷的人格特質等,本書所選用的例子能夠幫助讀者明確理解各演算法及實際應用,即使您不曾接觸過資料科學,也能藉由本書掌握基本概念。
本書特色:
.淺白的解釋,以及大量的圖解說明
.以實際的例子解說演算法的應用
.每章最後會有重點歸納加強學習效果
來自各界的讚譽
「以圖解的方式解說重要的資料科學相關演算法,對於剛接觸資料科學領域的新手、從事數據分析相關的商業人士而言,極有幫助。」- Dr. David Stillwell, 劍橋大學大數據課程講師
「以視覺化的方式解釋機器學習的概念,可以幫助不具備相關技術背景的學生了解這些抽象的概念。同時也能幫助剛接觸資料科學領域的學生掌握相關的基礎知識。」Ethan Chan,史丹佛大學大數據課程講師
「對資料科學與機器學習做了清楚的介紹,沒有拗口的術語,內容在廣度與深度也取得極佳的平衡。本書刻意避開數學推導,程式碼實作,在介紹不同機器學習方法的應用時也使用許多真實的問題。整體而言,本書對資料科學有相當生動的詮釋,我極力推薦。」- 陳俊杉, 台灣大學土木工程系教授
詳細網址:文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
目錄
Ch01|基本知識簡單說
1.1 準備資料
1.2 挑選演算法
1.3 調整參數
1.4 評估結果
1.5 本章小結
Ch02|k-平均分群演算法
2.1 尋找消費者群集
2.2 舉例:電影迷的性格特徵
2.3 定義群集
2.4 先天限制
2.5 本章小結
Ch03|主成份分析
3.1 探索食物的營養成分
3.2 主成份
3.3 舉例:分析食物族群
3.4 先天限制
3.5 本章小節
Ch04|關聯規則
4.1 找出消費模式
4.2 支持度、可信度與作用度
4.3 舉例:食品雜貨交易
4.4 先驗原則
4.5 先天限制
4.6 本章小結
Ch05|社群網路分析
5.1 將關係地圖化
5.2 舉例:武器交易的地緣政治性
5.3 Louvain 演算法
5.4 PageRank 演算法
Ch06|迴歸分析
6.1 推導一條趨勢線
6.2 舉例:預測房價
6.3 梯度下降
6.4 迴歸係數
6.5 相關係數
6.6 先天限制
6.7 本章小結
Ch07|k-最近鄰演算法與異常檢測
7.1 食物取證
7.2 物以類聚
7.3 舉例:蒸餾出紅酒的不同成份
7.4 異常檢測
7.5 先天限制
7.6 本章小結
Ch08|支持向量機
8.1 「不」或「噢不」?
8.2 舉例:預測心臟疾病
8.3 畫出最佳分界線
8.4 先天限制
8.5 本章小結
Ch09|決策樹
9.1 預測災難中的存活機率
9.2 舉例:逃出鐵達尼號
9.3 產生一棵決策樹
9.4 先天限制
9.5 本章小結
Ch10|隨機森林
10.1 群眾的智慧
10.2 舉例:預測犯罪
10.3 總體
10.4 引導聚集算法
10.5 先天限制
10.6 本章小結
Ch11|類神經網路
11.1 建立一顆大腦
11.2 舉例:辨識手寫數字
11.3 類神經網路的組成
11.4 活化法則
11.5 先天限制
11.6 本章小結
Ch12|A/B測試與多拉桿吃角子老虎機
12.1 A/B測試的基本概念
12.2 A/B測試的限制
12.3 Epsilon-Decreasing策略
12.4 舉例:多拉桿吃角子老虎機
12.5 有趣事實:跟緊贏家就對了?
12.6 Epsilon-Decreasing 策略的限制
12.7 本章小結
詳細網址:文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
詳細資料
- ISBN:9789864767939
- 規格:平裝 / 196頁 / 17 x 23 x 0.98 cm / 普通級 / 全彩印刷 / 初版
- 出版地:台灣
詳細網址:文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
作者介紹
作者簡介
Annalyn Ng
畢業自美國密西根大學,曾任大學部統計學助教。她在英國劍橋大學心理計量中心取得研究碩士學位,經手挖掘社群媒體資料,投放定向廣告,並撰寫招募人才的認知測驗程式等項目。隨後應迪士尼研究中心(Disney Research)延攬,加入行為科學小組,負責研究消費者的心理輪廓。
Kenneth Soo
擁有史丹佛大學統計碩士學位。在英國華威大學求學的三年間,在「數學、作業研究、統計學與經濟學」系中名列前茅。他同時擔任「作業研究與管理科學小組」的研究助理,研究雙目標穩定優化策略,以解決易受隨機故障影響的網路應用端。
詳細網址:文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
序
序
本書由兩位資料科學愛好者,撰寫而成。雖然資料科學越來越常被用來改善工作場域的種種決策,但許多人對這個領域的了解甚少。因此,我們將這些知識整理成一本書,幫助更多人學習,無論是有志深造的學生、積極進取的商業專業人士,或是任何有顆好奇心的人。
每一個教學課程涵蓋了各演算法的重要功能與假設,避開艱深的數學與生澀的術語。我們也使用現實世界的實際資料與例子來講述這些技法。
沒有以下這些人的幫助,我們不可能完成這本書。
感謝我們的文字編輯和好友Sonya Chan,她巧妙地融合了我們的寫作風格,確保我們的敘述流暢一致。
感謝Dora Tan為本書排版與彩圖提供建議。
感謝我們的好友Michelle Poh、Dennis Chew和Mark ho,他們為如何增進本書內容的可理解性提供非常寶貴的建議。
感謝密西根大學的Long Nguyen教授,史丹佛大學的Percy Liang教授與Michal Kosinski博士,謝謝諸位教授指導,並與我們兩位分享專業建言。
最後,我們想要感謝彼此,好友之間不免爭吵,但我們總是堅持到底,一起完成初衷。
詳細網址:文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
內容連載
為什麼要學資料科學?
想像你是一名年輕醫生。
當患者進入你的診所,抱怨呼吸困難、胸腔疼痛,以及偶爾發作的胃部灼熱症狀。你測量他的血壓及心跳數,發現一切指數都正常,而且這位患者過去並沒有上述病史。
觀察他的體型,你注意到這位患者有些胖。基於他所敘述的病狀常常出現在體重過重的人們當中,身為醫生的你告訴他一切都在控制之中,並建議這位患者找時間多運動。
很多時候,像是上述例子的情況,會導致對於潛在心臟病的錯誤診斷—因為心臟疾病患者的病狀與普通肥胖症的症狀非常相似,醫生們通常需藉由更進一步的檢查,檢測出更為嚴重的病情。
身為人類,我們的判斷常常受制於有限的、主觀的經驗和不全面的知識。將影響我們的決策過程,就像一位缺乏經驗的的年輕醫生,放棄可能導出更準確結論的進一步測試 。
這正是資料科學可以發揮功效的地方。
資料科學並不是依賴單獨個體的價值判斷,而是幫助我們駕馭來自多元資料來源的資訊,做出更完善的決策。舉例來說,我們可以查閱患者歷史紀錄,尋找類似病狀的患者資料,以便發現過去被忽略的可能診斷。
現代的運算技術及先進的演算法,可以幫助我們:
.辨識大資料集中的潛在趨勢
.善用趨勢來進行預測
.計算每一個可能結果的機率
.迅速取得準確分析結果。
本書是介紹資料科學與演算法的入門書,具有通俗易懂的風格(本書可不談數學!)。為了幫助你掌握關鍵概念,我們使用直觀的解釋與大量的視覺效果。
每一個演算法有獨立的章節,以現實世界的實例應用來解釋各演算法如何運作。在網路上可以取得這些例子的資料,資料來源列於參考文獻一章中。如果想要複習你在本書中學到什麼,可以翻閱每一章節最後的「本章小結」。
在本書的最後,你也可以找到比較各演算法優缺點的參考清單,以及常用術語的字彙表。
我們希望能幫助你對資料科學有更實際的理解,而你也可以善用資料科學的優勢,做出更好的決策。
詳細網址:文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
詳細網址:文科生也看得懂的資料科學~好書精選[悅讀推薦]博客來 金石堂 好冊
資料來源:博客來,圖片來源:博客來
留言列表