close
書名:PyTorch深度學習入門與應用:必備實作知識與工具一本就學會,語言:繁體中文,ISBN:9786263332591,頁數:336,出版社:博碩,作者:王進德,出版日期:2022/10/04,類別:電腦資訊

PyTorch深度學習入門與應用:必備實作知識與工具一本就學會~好書精選[悅讀推薦]博客來 金石堂 好冊


PyTorch深度學習入門與應用:必備實作知識與工具一本就學會


內容簡介


  深度學習是人工智慧的一個分支,相較於傳統的機器學習,深度學習在某些領域中更接近人類智慧,而逐漸走進我們的生活中,常見的應用如人臉辨識、語音識別、智慧駕駛等。

  PyTorch是一個開源的Python深度學習函式庫,這個軟體主要由Facebook的人工智慧研究團隊開發,而由於PyTorch的語法簡單,且擁有完善的文件說明,目前已成為開發深度學習的主要框架之一。

  本書內容由淺入深,不只對PyTorch進行系統化的介紹,也詳細說明了神經網路、CNN網路、RNN網路及強化學習等主題。本書還安排了18個實習,以PyTorch實作深度學習的各種演算法,經由實作的過程,可有效幫助讀者學習,進入深度學習的世界。

  【目標讀者】
  ☛對深度學習有興趣的初學者,可讓讀者兼顧理論與實作。
  ☛適用於大專院校「深度學習」課程的學生,可作為教師授課之用。
  ☛已學過TensorFlow且想再學習PyTorch框架者,可對學習、研究及求職有很大的幫助。
  ☛專案設計者、AI工程師、數據分析工程師,也很適合閱讀本書。

本書特色

  著重PyTorch的實作與應用,
  輕鬆進入深度學習與人工智慧領域!

  ☛詳細說明深度學習的實作流程,以系統化步驟來處理各式的任務問題。
  ☛介紹深度學習原理,實作DNN、CNN、RNN、LSTM、RL各種演算法。
  ☛提供完整的程式範例,程式力求淺顯易懂,說明深入淺出。
  ☛注重數據集的探索處理,可強化數據分析能力。
 


詳細網址:PyTorch深度學習入門與應用:必備實作知識與工具一本就學會~好書精選[悅讀推薦]博客來 金石堂 好冊



目錄


|CHAPTER 01| PyTorch簡介與安裝

1.1 本章提要
1.2 PyTorch簡介
1.3 建置PyTorch開發環境
1.4 安裝CPU版本的PyTorch
1.5 安裝GPU版本的PyTorch
1.6 Jupyter Notebook基本操作
1.7 測試PyTorch是否安裝成功

|CHAPTER 02| PyTorch張量
2.1 本章提要
2.2 建立張量
2.3 建立預設值張量
2.4 張量與NumPy
2.5 CPU和GPU中的張量
2.6 張量的索引及切片
2.7 張量的變換
2.8 張量拼接及拆分
2.9 比較運算
2.10 實習①:張量基本操作

|CHAPTER 03| 自動微分與線性迴歸
3.1 本章提要
3.2 PyTorch自動微分
3.3 線性迴歸
3.4 梯度下降法解多元迴歸問題
3.5 張量算術運算
3.6 實習②:Autograd解多元迴歸問題

|CHAPTER 04| 建構神經網路
4.1 本章提要
4.2 感知器
4.3 多層神經網路
4.4 激活函數
4.5 損失函數
4.6 倒傳遞演算法
4.7 優化器
4.8 torch.nn模組
4.9 torch.optim模組
4.10 訓練神經網路程式架構
4.11 實習③:單層神經網路解多元迴歸問題

|CHAPTER 05| 數據探索與處理
5.1 本章提要
5.2 數據分析
5.3 探索數據
5.4 處理異常值
5.5 處理缺失值
5.6 數據縮放
5.7 拆分數據集
5.8 實習④:預測歌曲發行年份

|CHAPTER 06| 自定義神經網路
6.1 本章提要
6.2 自定義網路層
6.3 nn.functional模組
6.4 深度學習實現流程
6.5 Dataset與DataLoader
6.6 儲存與載入模型
6.7 實習⑤:信用卡違約二元分類
6.8 自定義Dataset
6.9 實習⑥:鳶尾花多元分類

|CHAPTER 07| 卷積神經網路
7.1 本章提要
7.2 CNN基本結構
7.3 卷積層
7.4 池化層.
7.5 全連接層
7.6 加入Dropout層及BatchNorm層
7.7 實習⑦:MNIST手寫數字辨識

|CHAPTER 08| 遷移學習
8.1 本章提要
8.2 TorchVision函式庫
8.3 實習⑧:使用ResNet18模型進行圖片分類
8.4 調整學習率
8.5 ImageFolder類別
8.6 實習⑨:微調ResNet18模型進行圖片分類

|CHAPTER 09| 建構ResNet神經網路
9.1 本章提要
9.2 CIFAR-10數據準備與探索
9.3 實習⑩:CIFAR-10 CNN圖片分類
9.4 ResNet殘差網路
9.5 ResNet18模型架構
9.6 PyTorch實現ResNet網路
9.7 實習⑪:ResNet10 圖形分類

|CHAPTER 10| 循環神經網路
10.1 本章提要
10.2 RNN 循環神經網路
10.3 隨時間倒傳遞演算法
10.4 雙向RNN
10.5 PyTorch實作RNN網路
10.6 實習⑫:RNN處理序列數據

|CHAPTER 11| 長短期記憶網路
11.1 本章提要
11.2 LSTM工作原理
11.3 門控機制
11.4 GRU網路
11.5 PyTorch實作LSTM網路
11.6 文字轉數字的處理
11.7 詞嵌入
11.8 實習⑬:LSTM網路處理IMDB評論分類

|CHAPTER 12| 強化學習
12.1 本章提要
12.2 強化學習簡介
12.3 Markov決策過程
12.4 獎勵與回報
12.5 Q學習演算法
12.6 Q學習演算法手算範例
12.7 實習⑭:Q學習演算法解走至戶外問題
12.8 實習⑮:Q學習解迷宮

|CHAPTER 13| OpenAI Gym
13.1 本章提要
13.2 OpenAI Gym基本操作
13.3 FrozenLake遊戲
13.4 Epsilon- 貪婪策略
13.5 實習⑯:Q學習演算法解Frozen Lake
13.6 Mountain Car遊戲
13.7 將連續值轉換成離散值
13.8 實習⑰:Q學習演算法解Mountain Car

|CHAPTER 14| 深度Q網路
14.1 本章提要
14.2 DQN網路
14.3 DQN工作原理
14.4 DQN演算法
14.5 CartPole-v1遊戲
14.6 CartPole的深度Q學習
14.7 建構回放緩衝區
14.8 建構主要Q網路及目標Q網路
14.9 實習⑱:DQN解CartPole問題


詳細網址:PyTorch深度學習入門與應用:必備實作知識與工具一本就學會~好書精選[悅讀推薦]博客來 金石堂 好冊



詳細資料


  • ISBN:9786263332591
  • 規格:平裝 / 336頁 / 17 x 23 x 1.86 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣



詳細網址:PyTorch深度學習入門與應用:必備實作知識與工具一本就學會~好書精選[悅讀推薦]博客來 金石堂 好冊


PyTorch深度學習入門與應用:必備實作知識與工具一本就學會

詳細網址:PyTorch深度學習入門與應用:必備實作知識與工具一本就學會~好書精選[悅讀推薦]博客來 金石堂 好冊


資料來源:博客來,圖片來源:博客來





PyTorch深度學習入門與應用:必備實作知識與工具一本就學會 中文書>電腦資訊>概論/科技趨勢>人工智慧/機器學習 博客來 金石堂 好書推薦 排行榜 今日66折 網路書局 暢銷書 優質團購 熱銷特賣 網友推薦 優惠精選 超值好貨 狂降優惠 推薦必買 熱銷排行 快速到貨 必BUY超值專區 TOP熱銷排行 新品上市 最新上架

arrow
arrow
    創作者介紹
    創作者 博客來好書推薦 的頭像
    博客來好書推薦

    經典排行榜暢銷書博客來金石堂推薦

    博客來好書推薦 發表在 痞客邦 留言(0) 人氣()